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Recent attempts to examine the biological processes responsible for the general characteristics of mutualistic networks
focus on two types of explanations: nonmatching biological attributes of species that prevent the occurrence of certain
interactions (‘‘forbidden links’’), arising from trait complementarity in mutualist networks (as compared to barriers to
exploitation in antagonistic ones), and random interactions among individuals that are proportional to their
abundances in the observed community (‘‘neutrality hypothesis’’). We explored the consequences that simple linkage
rules based on the first two hypotheses (complementarity of traits versus barriers to exploitation) had on the topology
of plant–pollination networks. Independent of the linkage rules used, the inclusion of a small set of traits (two to four)
sufficed to account for the complex topological patterns observed in real-world networks. Optimal performance was
achieved by a ‘‘mixed model’’ that combined rules that link plants and pollinators whose trait ranges overlap
(‘‘complementarity models’’) and rules that link pollinators to flowers whose traits are below a pollinator-specific
barrier value (‘‘barrier models’’). Deterrence of floral parasites (barrier model) is therefore at least as important as
increasing pollination efficiency (complementarity model) in the evolutionary shaping of plant–pollinator networks.

Citation: Santamarı́a L, Rodrı́guez-Gironés MA (2007) Linkage rules for plant–pollinator networks: Trait complementarity or exploitation barriers? PLoS Biol 5(2): e31. doi:10.
1371/journal.pbio.0050031

Introduction

Generalisation is a widespread feature of plant–pollinator
interactions [1], and there is a growing interest in the study of
complete communities of interacting plants and flower-
visiting insects [2,3]. The topology of plant–pollinator
qualitative networks (networks that simply consider whether
species pairs interact or not) follows certain regular patterns
[2–6]. The number of interactions (L) increases with network
size (S, the sum of the number of plant species, F, and
pollinator species, P), following a power-law relationship [4],
while the percentage connectivity [C ¼ 100 3 L/(F 3 P),
referred to as connectivity, or C, hereafter] decreases with
network size [3]. Furthermore, most plant–pollinator net-
works are highly nested, i.e., pollinators that visit a plant
species are likely to visit more-generalist plant species as well
[3,4]. The nestedness (N) of a network increases with its C and
size, and it is significantly higher than expected by chance for
all moderately large pollination networks (i.e., with more than
50 species) that have been studied [4].

The existing studies on plant–pollinator and seed dispers-
er–plant interactions also suggest that the nested structure of
mutualistic networks reflects a fundamental difference from
antagonistic webs, arising from how specialisation is dis-
tributed among interacting species [4–6]. In contrast to
mutualistic networks, antagonistic networks (e.g., predator–
prey, herbivore–plant) tend to be more compartmentalised,
i.e., characterised by cohesive groups of interacting species
with relatively few interactions among groups [7,8]. Several
authors have suggested that nested patterns of asymmetrical
specialisation may be more likely to develop in mutualistic
interactions because natural selection specifically favours the
convergence and complementarity of traits in interacting
species [9]. In contrast, antagonistic interactions may favour
greater compartmentalisation through the continual coevo-

lution of defences and counterdefences (i.e., evolutionary arm
races involving exploitation barriers), which generates great-
er specificity [9].
The idea that nested asymmetries in specialisation are

generated by coevolutionary processes has strong links to the
concept of ‘‘forbidden links’’ [5]. Under this hypothesis, the
topological properties of mutualistic networks result from
nonmatching biological attributes of species, such as phenol-
ogy or morphology, which prevent the occurrence of certain
interactions [8]. However, no work to date has explicitly
evaluated the extent to which forbidden links can account for
network topology, and detailed information about the
biology of species interactions is considered a prerequisite
for critical tests [10]. The goal of this study is to bridge this
gap by considering the extent to which different ecological
mechanisms might account for the observed network
patterns. Using a set of simple models, we investigated
whether linkage rules aimed at representing the two
processes outlined above (trait complementarity and exploi-
tation barriers) can explain the topological properties of
plant–pollination networks.
We concentrate on two possible mechanisms. In the first

mechanism (complementarity traits), the similarity between
the reward that the plant has to offer and the resource that
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the pollinator seeks determines whether species pairs
interact. As an example, consider plant and pollinator
phenology: a plant will receive visits only of pollinators that
are present and active during their flowering period, and
plant and pollinator species can become progressively
cospecialised by developing increasingly narrower phenolog-
ical matches [11]. Other examples may include nectar sugar
concentration, in which each major pollinator group prefers
a specific range of nectar concentrations or sugar composi-
tions [12–15] (although other authors have interpreted nectar
dilution as a barrier against bee pollination [16], similar to
our second scenario); flower colour, in which flower signals
match pollinator perceptual systems (e.g., [17–20], but see also
[21,22] for a critical view); and specialised scents [23–25].

In the second scenario (barrier traits), what determines

whether species pairs interact is not their similarity but
rather the ability of the pollinator to reach the reward
offered by the flowers. Each flower type conceals its reward
behind barriers, and only those pollinators whose traits allow
them to overcome the barriers have access to the reward. As
an example, consider the length of hawkmoths’ proboscises
and corolla tubes [26,27]: hawkmoths can forage efficiently
only at flowers with corolla tubes shorter than their
proboscises, and it is mainly these flowers that they visit, as
shown by Haber and Frankies [28] for a Costa Rican
hawkmoth community. Similar examples, involving proboscis
or beak length and corolla-tube depth, have been described
for bee-, fly-, and hummingbird-pollinated systems [29–33].
To evaluate whether simple linkage rules lead to mutual-

istic networks with topological properties similar to those
observed in actual networks, we used different sets of rules,
derived from the stated mechanisms, to simulate the linkage
process. We used complementarity and barrier models based
on one, two, or four traits and a mixed model based on two
complementarity and two barrier traits. For example, in the
model with two complementarity and two barrier traits, each
individual (plant or pollinator) in a simulated community was
assigned two complementarity and two barrier traits at
random, and pairs of plants and pollinators interacted if
the barrier traits of the pollinator had higher values than the
respective traits of the plants and their complementarity
traits were ‘‘sufficiently’’ similar. The complementarity
models considered three variants (the narrow, medium, and
broad complementarity models), depending on how tight the
overlap between the plant and pollinator traits had to be for
the species to interact. The topology of simulated commun-
ities was then compared with the topology of 37 real-world
plant–pollinator networks [3,4,34–36], including three un-
published matrices kindly provided by J. M. Olesen. For
conciseness, we only describe the results of the models
providing a closer fit to the data.
The assumption that the structure of mutualistic networks

results from random interactions among individuals can
reproduce certain topological properties of these networks

Table 1. Percentage of Modelled Networks that Were Not Significantly Nested

Model Percent of

Networks Nested

Percent of Networks

Not Nested

Size Range of

Nested Networks

Size Range of

Nonnested Networks

Real-world data 95 5 27–952 22–50

Barrier model, 1 trait 100 0 46–980 ...

Barrier model, 2 traits 100 0 38–961 ...

Barrier model, 4 traits 100 0 22–806 ...

Complementarity model, 1 trait, broad range 100 0 52–980 ...

Complementarity model, 1 trait, medium range 98.5 1.5 53–980 53–56

Complementarity model, 1 trait, narrow range 95.5 4.5 52–980 50–66

Complementarity model, 2 traits, broad range 100 0 47–980 ...

Complementarity model, 4 traits, broad range 100 0 49–980 ...

Complementarity model, 2 traits, narrow range 90.5 9.5 25–1,116 22–156

Complementarity model, 4 traits, narrow range 75 25 29–717 20–103

Mixed model 89 11 23–714 22–63

Neutral model (uniform distribution) 100 0 43–1,064 ...

Neutral model (lognormal distribution) 96 4 20–1,196 23–57

S, network size (number of plant species þ number of pollinator species). Sample size: N ¼ 37 for real-world data, N ¼ 200 for all models.
doi:10.1371/journal.pbio.0050031.t001

Author Summary

Whether they are antagonistic—as between predator and prey—or
beneficial—as between pollinator and flower, interactions among all
the key species in an ecosystem follow regular patterns. Con-
nectivity (the proportion of possible interactions that are actually
realised), for instance, decreases with network size. The ‘‘forbidden
links’’ hypothesis proposes that connectivity decreases because
interactions are prevented by a mismatch of biological attributes
between certain species. Mismatches could arise from the evolution
of complementary traits in mutualistic relationships (such as insects
preferring to pollinate only flowers of a certain colour) or of traits
that prevent exploitation in antagonistic ones (such as a plant
growing a long corolla so that insects without a long proboscis
cannot reach the nectar reward). We explored the consequences of
simple linkage rules based on these two variants on the topology of
plant–pollination networks. When compared to data for 37 real
plant–pollinator networks, we show that a ‘‘mixed’’ model that
combines simple rules from both ‘‘complementarity’’ and ‘‘barrier’’
models best explains the pattern of interactions. This implies, for
example, that deterring floral parasites is at least as important as
increasing pollination efficiency in the evolution of plant–pollinator
networks. Our work emphasises the value of explaining the
underlying ecological and evolutionary mechanisms generating
such patterns.
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[6,10]. To complement our work on mechanistic linkage rules,
we used two formulations of the neutrality hypothesis of
Vázquez and Aizén [6] to simulate plant–pollinator networks.
In these models, the probability that a plant–pollinator pair
interacts is proportional to their relative abundance, and
relative abundances were drawn from either a uniform
(‘‘uniform neutral model’’) or a lognormal (‘‘lognormal
neutral model’’) probability distribution [37,38].

Results

Most (95%) real-world networks were significantly nested,
all exceptions being networks of small size (network size [S] ,

50). Most modelled networks were also highly nested,
although a few models showed a small proportion (up to
11% for the mixed model) of nonnested networks for small
network sizes (S , 160 and, in most cases, S , 70; Table 1).

The scaling properties of networks of increasing species
richness (S) differed substantially from those of real-world

pollination networks for all one-trait models, most two- and
four-trait models, and the uniform neutral model (Table 2;
Figures 1 and 2). Only the most restrictive complementarity
(two and four traits, narrow range), the four-trait barrier
model, the mixed model, and the lognormal-neutral model
approached the trends observed in real-world data, and the
latter two provided the best fits to most variables.
In real-world networks, the connectivity [C] decreases as a

power of S (Figure 1) [3]. While five models (two- and four-
trait barrier, four-trait narrow complementarity, mixed, and
lognormal-neutral models) approached this behaviour, all of
them failed to predict real-world values across the complete
range of network sizes and intersected the empirical fit at the
lower, medium, and upper part, respectively, of the data
range (Figure 1).
The number of interactions (L) increased as a power of S in

all models. The exponent of this relationship was greater than
the one describing real-world data for all models, and the

Table 2. Relationship between Network Topology and Network Size (s)

Model N NR N* C L

Real-world data 0.038 3 LnS þ 0.74 0.065 3 LnS þ 0.52 �0.041 3 LnS þ 0.32 303 3 S�0.76 1.08 3 S1.10

Barrier model, 1 trait 0.0019 3 LnS þ 0.99 �0.042 3 LnS þ 0.74 0.157 3 LnS þ 0.115 53.7 3 S�0.0095 0.26 3 S1.81

t ¼ 4.29, p ¼ 6 3 10�5 t ¼ 10.2, p ¼ 2 3 10�12 t ¼ 20.2, p ¼ 2 3 10�21 t ¼ 11.1, p ¼ 2 3 10�13 t ¼ 13.5, p ¼ 6 3 10�16

Barrier model, 2 traits 0.010 3 LnS þ 0.90 �0.038 3 LnS þ 0.73 0.14 3 LnS � 0.049 50.9 3 S�0.10 0.26 3 S1.70

t ¼ 1.18, p ¼ 0.12 t ¼ 9.89, p ¼ 4 3 10�12 t ¼ 17.5, p ¼ 2 3 10�19 t ¼ 8.32, p ¼ 3 3 10�10 t ¼ 11.0, p ¼ 2 3 10�13

Barrier model, 4 traits 0.018 3 LnS þ 0.88 0.012 3 LnS þ 0.70 �0.0022 3 LnS þ 0.26 59.9 3 S�0.30 0.25 3 S1.55

t ¼ 0.81, p ¼ 0.21 t ¼ 4.17, p ¼ 9 3 10�5 t ¼ 7.8, p ¼ 10�9 t ¼ 4.46, p ¼ 4 3 10�5 t ¼ 5.96, p ¼ 3 3 10�7

Complementarity model,

1 trait, broad range

�0.072 3 LnS þ 0.90 �0.107 3 LnS þ 0.94 0.237 3 LnS � 0.81 23.5 3 S�0.0028 0.12 3 S1.81

t ¼ 5.81, p ¼ 6 3 10�7 t ¼ 11.4, p ¼ 8 3 10�14 t ¼ 11.4, p ¼ 7 3 10�14 t ¼ 13.1, p ¼ 10�15 t ¼ 15.9, p ¼ 3 3 10�18

Complementarity model,

1 trait, medium range

�0.033 3 LnS þ 0.67 �0.072 3 LnS þ 0.67 0.327 3 LnS � 0.97 41.2 3 S0.0061 0.21 3 S1.81

t ¼ 20.5, p ¼ 9 3 10�22 t ¼ 16.1, p ¼ 3 3 10�18 t ¼ 7.18, p ¼ 9 3 10�9 t ¼ 9.57, p ¼ 10�11 t ¼ 11.9, p ¼ 2 3 10�14

Complementarity model,

1 trait, narrow range

0.0087 3 LnS þ 0.80 �0.060 3 LnS þ 0.77 0.274 3 LnS � 0.27 68.3 3 S0.0057 0.35 3 S1.81

t ¼ 13.9, p ¼ 2 3 10�16 t ¼ 10.5, p ¼ 7 3 10�13 t ¼ 5.74, p ¼ 7 3 10�7 t ¼ 5.89, p ¼ 5 3 10�7 t ¼ 7.52, p ¼ 3 3 10�9

Complementarity model,

2 traits, broad range

�0.022 3 LnS þ 0.79 �0.062 3 LnS þ 0.69 0.26 3 LnS � 0.46 1.01 3 S0.013 6.30 3 S1.84

t ¼ 12.4, p ¼ 8 3 10�15 t ¼ 14.6, p ¼ 5 3 10�17 t ¼ 11.8, p ¼ 3 3 10�14 t ¼ 10.5, p ¼ 7 3 10�13 t ¼ 12.4, p ¼ 6 3 10�15

Complementarity model,

4 traits, broad range

�0.032 3 LnS þ 0.83 �0.079 3 LnS þ 0.83 0.23 3 LnS � 0.62 3.38 3 S�0.025 5.88 3 S1.77

t ¼ 11.6, p ¼ 5 3 10�14 t ¼ 11.0, p ¼ 2 3 10�13 t ¼ 7.23, p ¼ 8 3 10�9 t ¼ 6.5, p ¼ 8 3 10�8 t ¼ 8.71, p ¼ 10�10

Complementarity model,

2 traits, narrow range

�0.0098 3 LnS þ 0.91 �0.014 3 LnS þ 0.87 0.0068 3 LnS þ 0.038 0.82 3 S�0.20 4.86 3 S1.58

t ¼ 4.81, p ¼ 1 3 10�5 t ¼ 3.87, p ¼ 0.00022 t ¼ 2.55, p ¼ 0.0076 t ¼ 4.49, p ¼ 3 3 10�5 t ¼ 4.10, p ¼ 0.00011

Complementarity model,

4 traits, narrow range

0.048 3 LnS þ 0.70 0.049 3 LnS þ 0.67 �0.0021 3 LnS þ 0.036 0.47 3 S�0.75 3.26 3 S1.18

t ¼ 1.03, p ¼ 0.16 t ¼ 4.56, p ¼ 3 3 10�5 t ¼ 5.03, p ¼ 7 3 10�6 t ¼ 17, p ¼ 4 3 10�19 t ¼ 14.2, p ¼ 10�16

Mixed model 0.030 3 LnS þ 0.79 0.035 3 LnS þ 0.70 �0.0091 3 LnS þ 0.12 51.8 3 S�0.49 3.95 3 S1.37

t ¼ 0.64, p ¼ 0.26 t ¼ 1.77, p ¼ 0.042 t ¼ 1.47, p ¼ 0.07 t ¼ 5.21, p ¼ 4 3 10�6 t ¼ 5.81, p ¼ 5 3 10�7

Neutral model

(uniform distribution)

�0.0042 3 LnS þ 0.76 �0.062 3 LnS þ 0.77 0.23 3 LnS � 0.53 35.72 3 S�0.050 0.18 3 S1.76

t ¼ 10.2, p ¼ 2 3 10�12 t ¼ 11.4, p ¼ 7 3 10�14 t ¼ 8.74, p ¼ 10�10 t ¼ 7.10, p ¼ 10�8 t ¼ 9.24, p ¼ 2 3 10�11

Neutral model

(lognormal distribution)

0.026 3 LnS þ 0.81 0.045 3 LnS þ 0.66 �0.025 3 LnS þ 0.19 108 3 S�0.64 0.48 3 S1.21

t ¼ 0.12, p ¼ 0.45 t ¼ 1.25, p ¼ 0.11 t ¼ 0.93, p ¼ 0.18 t ¼ 4.73, p ¼ 2 3 10�5 t ¼ 4.94, p ¼ 9 3 10�6

Paired t-test values and significance levels compare each model to real-world data (df¼ 36), by comparing the absolute value of the residuals of real-world data to an empirical fit (shown
in the first row) with the deviations of the real-world data points from fits obtained from the modelled data sets. For each variable, models that did not differ significantly from the
empirical fit to real-world data (i.e., those with nonsignificant t-tests, after applying sequential Bonferroni corrections) are marked in bold. When all models differed significantly from the
empirical fit, the model with the lowest residual sum of squares plus all models that did not show a significantly worse fit (i.e., significantly larger residuals when compared with paired t-
tests, after applying sequential Bonferroni corrections) are marked in bold italics.
doi:10.1371/journal.pbio.0050031.t002
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four-trait barrier, two-trait narrow complementarity, and
lognormal-neutral models provided the closest fits (Table 2).

In real-world pollination networks, both the nestedness of
the networks (N) and the nestedness of random matrices with
similar size and average C (null-model nestedness [NR])
increased as the logarithm of S (Table 2; Figure 2). This
simultaneous increase of N and NR results in a logarithmic
decrease of the relative nestedness [N*]. Five models (two-
and four-trait barrier, two-trait narrow complementarity,
mixed, and lognormal-neutral models) reproduced remark-
ably well the logarithmic increase in N with network size, but
only two of them (mixed and lognormal-neutral models)
performed well in predicting the nestedness of random
matrices (NR) and, therefore, the N* (Figure 2).

Bascompte et al. [4] divided their mutualistic networks into
two groups, according to whether their number of inter-
actions (L) was greater or lesser than expected for their size
(positive or negative residuals, respectively, in the regression
between L and S). The N* in networks having positive
residuals was greater than that in networks with negative
residuals (F ¼ 6.59, df ¼ 1, 50, p ¼ 0.013) [4]. This analysis
pooled pollination and seed-dispersal networks, and the
results did not reach significance when plant–pollinator
networks (of which there were 25) were analysed on their
own. However, the addition of 12 networks to the data set
used here already resulted in a significant difference (t¼ 3.51,
p ¼ 0.0015, n ¼ 37). Running this analysis on the networks
generated by the models, we observed that four models (four-
trait barrier, two-trait narrow-complementarity, mixed, and
lognormal neutral models) produced comparable results
(Figure 3).

Because N* decreases with NR and, in the range of interest
(C , 50%), NR decreases with C [39], the increased N* of
positive L-on-S residuals implies that, as the number of

connections of mutualistic networks increases, the nestedness
of real-world networks does not decrease as fast as it would in
a random matrix. A multiple regression analysis showed that
the trends described for real-world data (decreased N and NR

and increased N* with increased L, all corrected for the effect
of S; Table 3) were shown by the mixed, lognormal-neutral,
and four-trait narrow-complementarity models.

Figure 1. Connectivity of Networks of Increasing Size (S) for Real-World

and Modelled Data Matrices

Circles indicate real-world data (N ¼ 37), the continuous black line
indicates an empirical fit to real-world data, and the broken black line is
the result of lognormal-neutral models. Colour lines indicate the fits to
modelled data sets: narrow-range complementarity models are red,
broad-range complementarity models are magenta, barrier models are
blue, and mixed models are green. Dotted lines indicate one-trait
models, broken lines indicate two-trait models, and continuous lines
indicate four-trait models.
doi:10.1371/journal.pbio.0050031.g001

Figure 2. Nestedness of Networks of Increasing Size (S) for Real-World

and Modelled Data Matrices

Circles indicate real-world data (N ¼ 37), the continuous black line
indicates an empirical fit to real-world data, and the broken black line is
the result of lognormal-neutral models. Colour lines indicate the fits to
modelled data sets: narrow-range complementarity models are red,
broad-range complementarity models are magenta, barrier models are
blue, and mixed models are green. Dotted lines indicate one-trait
models, broken lines indicate two-trait models, and continuous lines
indicate four-trait models. NR (random matrices). N*, relative nestedness
(N/NR)
doi:10.1371/journal.pbio.0050031.g002
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Discussion

Recent work has greatly improved our knowledge of the
patterns and scaling laws that characterise plant–pollinator
networks, and the current challenge is to understand the
ecological and evolutionary processes that underlie these
regularities. Our work represents a first step in this direction.

Given the excellent performance of the lognormal neutral
model in predicting network characteristics, what is the use of
exploring more complex linkage rules? The main purpose of
null models is to remind us that showing that a given model
fits the data well is not necessarily a demonstration that the
model is ‘‘correct’’: more than one mechanism can produce
any given pattern [40]. When two alternatives can explain a

certain phenomenon, parsimony demands that we provision-
ally accept the simpler one, and null models are meant to
represent the simplest explanation that can be offered. So, if a
null model can be used to explain a pattern, there is no good
reason to search for a more complex explanation. There are
three reasons, however, why the lognormal neutral model can
be rejected as a most-parsimonious explanation of network
topology: (1) Assuming random interactions, in itself, is not
sufficient to reproduce network topology: the uniform null
model provided a very poor fit to the data, and in order to fit
the model we had to assume a lognormal distribution of
abundances. While the distribution of species abundances in
many communities is well described by a lognormal distribu-
tion [41], this is an empirical fit. The interpretation of this
empirical fit is problematic because it is not clear whether
generalist species are generalist because they are more
abundant, or they are more abundant because, being general-
ists, they have access to more resources. (2) The neutral model
assumes that species abundance determines the frequency of
interactions. This assumption has been recently evaluated by
Dupont et al. [36], who found a significant correlation between
abundance and generalisation level of the pollinators, but not
the plants, in an alpine community. Ollerton et al. [42], on the
other hand, reported an association between interaction
frequency and generalisation level but found no significant
correlation between the relative abundance of insects in the
community and their visitation rate to asclepiad plant species.
(3) The neutral model assumes that network structure results
from random interactions between species and ‘‘most
phenotypic characteristics of interacting species may be
irrelevant in determining broad patterns of interspecific
interactions’’ (e.g., degree distribution) [10]. This assumption
is at odds with all reported empirical data, which show that
phenotypic traits often prevent the interaction between
specific pairs of plants and pollinators [8,33]. For example,
Jordano et al. [8] show how 42% of 65% nonrecorded
interactions in a plant–hummingbird subnetwork can be
attributed to phenological or phenotypic mismatches between
the plant species and the pollinator, indicating that a sizeable
fraction of the interactions are ‘‘forbidden’’ and thus
individuals cannot interact at random. Given that two key
assumptions of the neutral model are not supported by
empirical data and that its causal interpretation is problem-
atic, and bearing in mind that more than one mechanism can
produce any given pattern, we believe that an examination of
alternative models based on phenotypic traits is granted.
Let us now turn to the ecological mechanisms (linkage

rules) that we have considered. Of these, only the multiple-
trait models were compatible with the data, and the
combination of both barrier and complementarity rules
fitted them best. Although we have tried a number of other
mechanistic models, such as stochastic versions of the
complementarity and barrier models, and models that
combined a lower amount of complementarity and barrier
traits (not dealt with in depth for the sake of conciseness), we
have been unable to produce any version that fitted the data
better than the mixed model presented here.
Although the optimal fit of the four-trait mixed model does

not necessarily imply that it provides a realistic description of
the linkage rules responsible for network assembly in the real
world [40], we have shown that simple ecological processes
may well lie behind the complexity of these large networks,

Figure 3. Relationship between Network C and N* for Real-World and

Modelled Data Matrices

Insets show the N* (average 6 SE) of highly and lowly connected
communities (i.e., those with positive and negative residuals in the fits of
the number of interactions on species richness displayed in the larger
panels). Narrow-range complementarity models are red, broad-range
complementarity models are magenta, barrier models are blue, and
mixed models are green. Dotted lines indicate one-trait models, broken
lines indicate two-trait models, and continuous lines indicate four-trait
models. Circles indicate real-world data (N ¼ 37), the continuous black
line indicates an empirical fit to real-world data, and the broken black
line is the result of lognormal-neutral models. Asterisks indicate
significant differences between highly and lowly connected categories
(i.e., those with positive and negative residuals, respectively). *p , 0.05,
**p , 0.01, ***p , 0.001, NSp . 0.05.
doi:10.1371/journal.pbio.0050031.g003
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and this result should encourage us to search for linkage rules
in the field. A minimum amount of complexity is nevertheless
required to explain real-world networks, since a combination
of at least four traits was necessary to reproduce the patterns
observed there.

The poor fit of the complementarity models to the data
shows that the complementarity rule, in itself, cannot be the
linkage rule we are looking for. It should be noted that this
result can be taken at face value: a model providing a poor fit
to the data can be dismissed regardless of whether a better
model is known. The complementary and barrier traits had
contrasting effects on network characteristics. Plant–polli-
nator pairs specialised on each other predominate with
complementarity models, leading to highly connected net-
works of low nestedness. To approach the nestedness of real-
world networks, we must impose very restrictive conditions

(narrow ranges with several traits), and under these con-
ditions, networks are very sensitive to random effects (high
values of NR) and show excessively low C. With barrier
models, on the other hand, specialised plants interact with
pollinators that have access to very diverse resources,
producing highly nested networks. In mixed models, which
provide the best fits, complementary traits relax the trend to
excessive nestedness of barrier models, and barrier models
relax the too-low connectance and the high dependence of
random effects of complementary traits.
The demonstration that the complementary rule alone is

unable to produce realistic network topologies has important
evolutionary implications. It suggests that nested patterns of
asymmetrical specialisation observed in mutualistic interac-
tions do not arise because natural selection on mutualisms
specifically favours the convergence and complementarity of

Table 3. Relationship between Network N, S, and C

Model Variable Fitted Equation Partial Correlations

LnS LnL

Real-world data N 0.75 þ 0.11 3 LnS � 0.067 3 LnL 0.49** �0.36*

NR 0.52 þ 0.22 3 LnS � 0.14 3 LnL 0.76*** �0.64***

N* 0.31 � 0.18 3 LnS þ 0.12 3 LnL �0.76*** 0.68***

Barrier model, 1 trait N 0.99 � 0.003 3 LnS � 0.003 3 LnL �0.08NS 0.14*

NR 0.61 þ 0.13 3 LnS � 0.093 3 LnL 0.60*** �0.71***

N* 0.48 � 0.33 3 LnS þ 0.27 3 LnL �0.55*** �0.70***

Barrier model, 2 traits N 0.86 þ 0.070 3 LnS � 0.035 3 LnL 0.36*** �0.31***

NR 0.45 þ 0.32 3 LnS � 0.21 3 LnL 0.90*** �0.92***

N* 0.86 � 0.88 3 LnS þ 0.60 3 LnL �0.91*** 0.93***

Barrier model, 4 traits N 0.79 þ 0.11 3 LnS � 0.058 3 LnL 0.50*** �0.43***

NR 0.36 þ 0.38 3 LnS � 0.24 3 LnL 0.93*** �0.93***

N* 0.71 � 0.50 3 LnS þ 0.32 3 LnL �0.88*** 0.88***

Complementarity model, 1 trait, broad range N 0.97 � 0.28 3 LnS þ 0.16 3 LnL �0.42*** 0.43***

NR 0.70 þ 0.053 3 LnS � 0.062 3 LnL 0.07NS �0.16*

N* �0.18 � 0.31 3 LnS þ 0.32 3 LnL �0.22** 0.39***

Complementarity model, 1 trait, medium range N 0.72 � 0.085 3 Lns þ 0.029 3 LnL �0.09NS 0.06NS

NR 0.43 þ 0.20 3 LnS � 0.15 3 LnL 0.45*** �0.57***

N* �0.23 � 0.53 3 LnS þ 0.47 3 LnL �0.39*** 0.57***

Complementarity model, 1 trait, narrow range N 0.38 þ 0.37 3 LnS � 0.24 3 LnL 0.44*** �0.50***

NR 0.32 þ 0.42 3 LnS � 0.29 3 LnL 0.88*** �0.92***

N* �0.59 þ 0.056 3 LnS þ 0.10 3 LnL 0.03NS 0.11NS

Complementarity model, 2 traits, broad range N 0.72 þ 0.050 3 LnS � 0.039 3 LnL 0.07NS �0.11NS

NR 0.45 þ 0.21 3 LnS � 0.15 3 LnL 0.23*** �0.31***

N* 0.13 � 0.43 3 LnS þ 0.37 3 LnL �0.61*** 0.77***

Complementarity model, 4 traits, broad range N 0.67 þ 0.13 3 LnS � 0.089 3 LnL 0.27*** �0.33***

NR 0.38 þ 0.36 3 LnS � 0.25 3 LnL 0.87*** �0.91***

N* 0.39 � 0.74 3 LnS þ 0.55 3 LnL �0.71*** 0.80

Complementarity model, 2 traits, narrow range N 0.50 þ 0.29 3 LnS � 0.19 3 LnL 0.74*** �0.75***

NR 0.45 þ 0.29 3 LnS � 0.19 3 LnL 0.93*** �0.94***

N* 0.094 � 0.034 3 LnS þ 0.026 3 LnL �0.11NS 0.13NS

Complementarity model, 4 traits, narrow range N 0.66 þ 0.086 3 LnS � 0.032 3 LnL 0.18** �0.08NS

NR 0.56 þ 0.16 3 LnS�0.10 3 LnL 0.70*** �0.57***

N* 0.14 � 0.10 3 LnS þ 0.084 3 LnL �0.22** 0.22**

Mixed model N 0.65 þ 0.15 3 LnS � 0.091 3 LnL 0.49*** �0.42***

NR 0.52 þ 0.20 3 LnS � 0.12 3 LnL 0.82*** �0.76***

N* 0.18 � 0.067 3 LnS þ 0.042 3 LnL �0.24** 0.21**

Neutral model (uniform distribution) N 0.56 þ 0.20 3 LnS � 0.11 3 LnL 0.43*** �0.44***

NR 0.33 þ 0.39 3 LnS � 0.26 3 LnL 0.90*** �0.92***

N* 0.40 � 0.071 3 LnS þ 0.53 3 LnL �0.77** 0.85***

Neutral model (Lnnormal distribution) N 0.76 þ 0.10 3 LnS � 0.061 3 LnL 0.79*** �0.70***

NR 0.58 þ 0.17 3 LnS � 0.10 3 LnL 0.94*** �0.90***

N* 0.23 � 0.095 3 LnS þ 0.058 3 LnL �0.78*** 0.69***

Figures indicate partial correlations and significance levels for multiple regression fits that included both independent variables. For each dependent variable, the best models (i.e., those
did not differ significantly from the empirical fit to real-world data, compared using paired t-tests with sequential Bonferroni correction, df ¼ 36) are marked in bold.
*p , 0.05, **p , 0.01, ***p , 0.001, NSp . 0.05.
doi:10.1371/journal.pbio.0050031.t003
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traits in interacting species. Plant–pollinator coevolution may
be the result of selection for plant traits that enhance
visitation rates by the most efficient pollinator and/or
pollination efficiency by the most common pollinator
[1,17,43], but floral evolution might also represent a com-
promise between attraction and defence [44–48]. Although
this latter hypothesis has been questioned because deterrent
traits will interfere with nectar exploitation by efficient
pollinators [49], recent models incorporating foraging deci-
sions have shown that the evolution of pollinator-deterring
traits is possible, provided that deterring parasites (i.e., floral
visitors that, by reducing pollen availability to more-efficient
pollinators, decrease the plant’s fitness) is sufficiently benefi-
cial [50]. Facilitation of most-efficient pollinators predicts an
increasing narrowing of the ecological range of plants and
pollinators as a consequence of coevolution. In such a
scenario, evolution leads to an increasingly tighter match of
the coevolved morphological structures (and/or functional
and behavioural traits) of plants and animals: the comple-
mentarity rule. In contrast, parasite deterrence leads to the
evolution of floral barriers and pollinator structures allowing
them to overcome plant defences: the barrier rule. The
inability of the complementarity rule to mimic the topology of
real-world networks thus suggests that the most-efficient–
pollinator principle is not the main (or the exclusive) driving
force behind the evolution of floral and pollinator traits. The
optimal performance of the mixed model indeed suggests that
both the most-efficient–pollinator principle and parasite
deterrence operate simultaneously as evolutionary forces in
natural communities.

Barrier traits also provide an answer to Vázquez’s main
criticism of Jordano’s forbidden interactions: ‘‘forbidden
links resulting from phenological or morphological con-
strains are equally likely to affect any species, not just the
most connected ones, and it is unclear whether this assembly
constraint would necessarily lead to a decay in the tail of the
degree distribution’’ [10]. By its very nature, barrier traits
affect specialist and generalist, plant and insect species
asymmetrically. While large trait values result in ecological
specialisation for plant species (i.e., few insects have trait
values large enough to access their resources), they result in
ecological generalisation for insect species (i.e., insects with
large trait values have access to many plant species). The
asymmetrical effect of large trait values on plants and insects
automatically generates nested patterns in the interaction
networks. More important, competition for floral resources
results in niche segregation that favours the exploitation of
specialised (i.e., large trait) plants by generalist (i.e., large
trait) insects, and vice versa [50], thereby imposing an upper
limit to the number of interactions that a generalist can
sustain at any given time.

The nested pattern seems to be a pervasive feature of
mutualistic networks and has also been found in seed-
dispersal networks and, more recently, in plant–ant [9] and
fish–anemone [51] communities. Our results suggest that
these systems may also be characterised by the coexistence of
both complementarity and barrier traits. Examples of both
types of traits for seed-dispersal networks may respectively
include fruiting phenology and disperser availability, on the
one hand, and fruit size and gape width, on the other [52].
Nevertheless, it must be noted that our work studies, other
than network nestedness, the relationships between network

size and various topological properties (L, C, N, NR, and N*).
In order to explore the applicability of complementarity and
barrier linkage rules to other mutualistic systems, we would
need to know how the topological properties of these
networks scale with size.
Our study represents a first effort to go beyond the

description of network topology and into the analysis of the
ecological and evolutionary processes behind it, which may
complement (and aid the interpretation of) other attempts
based on empirical studies [8,36,42]. The results presented in
this paper stress the utility of mechanistic, phenotype-based
approaches to community-level questions. To elucidate the
actual ecological processes responsible for the assembly of
plant–pollinator networks, we need detailed quantitative
descriptions of the plant–pollinator networks, the relation-
ship between traits of interacting plant–pollinator pairs, and
the implications of phenotypic traits for plant and pollinator
fitness.

Materials and Methods

We restrict our analysis and discussion to qualitative networks.
Plant–pollinator networks are characterised by their interaction
matrix, in which rows represent pollinator species and columns
represent plant species. The ij cell of the matrix is set to ‘‘1’’ if
pollinator species i interacts with plant species j, and to ‘‘0’’
otherwise.

To evaluate whether simple linkage rules lead to mutualistic
networks with the same topology as the networks actually observed,
we used different sets of rules to simulate the linkage process and
compared the topology of simulated communities with the topology
of 37 real-world plant–pollinator networks [3,4,34–36], plus three
unpublished matrices kindly provided by J. M. Olesen.

For each model, we simulated 200 communities of different sizes by
selecting a random number of potential plant species (F; in the range
of 10 to 160, uniform distribution), letting the number of potential
pollinators be P¼45.573�0.80823Fþ0.0473F2 (this regression was
derived from the real-world communities considered in the study)
and assigning traits at random to plants and pollinators to determine
which pairs interacted (as determined below for each particular
model). We then removed all plants and pollinators that had no
interactions, arriving at F1 and P1 interacting plants and pollinating
species, respectively. Relationships between network topology and
community size are all based on the value of S1 ¼ F1 þ P1. Network
topology was described by the total L, C, N, and N* [4,5]. A mutualistic
network is perfectly nested if each plant species is visited by a subset
of the pollinators visiting more-generalist plants [4,5], the ‘‘temper-
ature’’ (T) of the network is a normalised measure of the network’s
deviation from perfect nestedness [4,5] and ranges from 0 to 100, and
the level of nestedness is defined as N¼ (100 – T)/100 and ranges from
0 to 1 [4]. For each community that we simulated, we used 100
random matrices to assess the extent to which the level of nestedness
of the hypothetical community deviated from random expectations
and to calculate N*: N* ¼ (N – NR)/NR, where NR is the average
nestedness of the random replicates (‘‘null-model nestedness’’). The
random replicates were generated using the most conservative null
model (null model 2) proposed by Bascompte et al. [4].

Interaction matrices were generated with a Cþþprogram, available
upon request, as detailed below for each model. All ‘‘random’’
numbers were generated with the function ‘‘ran1’’ from [53]. The
program calculates nestedness using BINMATNEST (available at
http://www.eeza.csic.es/eeza/personales/rgirones.aspx [39]), an im-
proved version of the Nestedness Temperature Calculator [54,55].

Single-trait complementarity model. The single-trait complemen-
tarity model assumes that plants and pollinators can be described by
a single trait. Each species is characterised by a mean trait value and a
range of variability, and a pair of species will interact if their traits
overlap. Let Vi and Wj be the central trait value for pollinator species
i and plant species j, respectively, and let dVi and dWj be their ranges
of variability. Then, the value of the interaction matrix correspond-
ing to this pair of species, Iij, will be

Iij ¼ 1ifjVi �Wj j, 0:53ðdVi þ dWjÞ ð1Þ

and
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Iij ¼ 0 otherwise: ð2Þ

We considered three scenarios (hereafter referred to as broad-,
medium-, and narrow-range complementarity models, respectively)
that differed in the average value of dVi and dWj. In all cases, the Vi
and Wj were independent random variates with uniform distribution
in the interval (0, 1). The dVi and dWj, on the other hand, were
random variates with uniform distributions in the intervals (0, 1), (0,
0.5), and (0, 0.25), for the broad-, medium-, and narrow-range
complementarity models, respectively.

For many traits, there is a correlation between average value and
variability (J. M. Olesen, unpublished data). Including this correla-
tion in the model lead to identical results to the ones with
uncorrelated mean and variability, and the results will not be
discussed further.

Two- and four-trait complementarity models. In most, if not all,
real communities, flowers differ along several dimensions. The two-
and four-trait complementarity models consider the possibility that
pollinators must fit several floral traits in order to reach the reward
offered by flowers. The flowers of the jth plant species are thus
characterised by N central trait values and ranges of variability (N¼ 2
or 4 for the two- and four-trait complementarity models, respec-
tively), Wj

k and dWj
k, with k¼ 1,. . . N. Similarly, the pollinators of the

ith species are characterised by central trait values Vi
k and ranges of

variability dVi
k, with k ¼ 1,. . . N. Central trait values for plants and

pollinators were independent random variates with uniform distri-
bution in (0, 1), and ranges of variability were independent random
variates with uniform distribution in the range (0, 1), (0, 0.5), or (0,
0.25) for the broad-, medium-, and narrow-range complementarity
models, respectively. The interaction matrix is given by

Iij ¼ 1 if j,Vi.
k �,Wj.

kj, 0:53ðdVk
i þ dWk

j Þ for all k ¼ 1; :::N

ð3Þ

and

Iij ¼ 0 otherwise: ð4Þ

One-trait barrier model. Like the complementarity model, the one-
trait barrier model assumes that flowers and pollinators can be
described by a single trait. We ignore variability in this case and
simply assume that pollinators of species i will visit flowers of species j
if their trait, Vi, is greater than the barrier of the plant, Wj (assuming
that pollinators of species i will visit flowers of species j if Vi , Wj is
mathematically equivalent and leads to exactly the same results). As a
result, the interaction matrix takes the values

Iij ¼ 1 if Vi.Wj ð5Þ

and

Iij ¼ 0 otherwise: ð6Þ

The Vi and Wj were independent random variates with uniform
distributions in the interval (0, 1).

Two- and four-trait barrier models. The two- and four-trait barrier
models consider the possibility that pollinators must overcome
several barriers in order to reach the reward offered by flowers.
The flowers of the jth plant species are thus characterised by N
barriers (N ¼ 2 or 4 for the two- and four-trait barrier models,
respectively), Wj

k, with k ¼ 1,. . . N, and the pollinators of the ith
species are characterised by traits Vi

k, with k ¼ 1,. . . N, where the Vi
k

and Wj
k are independent random variates with uniform distribution

in (0, 1). The interaction matrix is given by

Iij ¼ 1 if Vk
i .Wk

j for all k ¼ 1; :::N ð7Þ

and

Iij ¼ 0 otherwise: ð8Þ

Mixed models. In real communities, the interactions between
flowers and pollinators are likely to combine both complementarity
and barrier types of traits (J. M. Olesen, M. Price, and N. Waser,
unpublished data). The mixed models combine complementarity and
barrier types of traits (two traits each). For this purpose, we selected
the barrier model that produced the best fit to real-world data: the
narrow-complementarity model.

The flowers of the jth plant species are thus characterised by two
barrier traits, Wj

k, two ranges of variability dWj
k (k ¼ 1, 2), and two

central trait values,Wj
k (k¼3, 4). The pollinators of the ith species are

characterised by two barrier traits, Vi
k, two ranges of variability dVi

k

(k ¼ 1, 2), and two central trait values, Vi
k (k ¼ 3, 4). All variables are

independent random variates with uniform distribution and ranges

(0, 1) for the barrier traits and central trait values and (0, 0.25) for the
ranges of variability. The interaction matrix is given by

Iij ¼ 1 if jVk
i �Wk

j j, 0:53ðdVk
i þ dWk

j Þ; for k ¼ 1 and 2 and

Vk
i .Wk

j ; for k ¼ 3 and 4
ð9Þ

and

Iij ¼ 0 otherwise: ð10Þ

Neutral model. The neutral models assume that interactions
between plants and pollinators are determined by the relative
abundance of the species. The jth plant species is characterised by
its relative abundance, Wj, and the pollinators of the ith species by
their relative abundance, Vi, where the Vi and Wj are independent
random variates with uniform distribution in (0, 1). The interaction
matrix is given by

Iij ¼ 1 with probability Vi 3Wj ð11Þ

and

Iij ¼ 0 otherwise: ð12Þ

Lognormal neutral model. The lognormal neutral model was
similar to the neutral model, except that the Vi and Wj are now
independent random variates with lognormal distribution. The
interaction matrix is given by

Iij ¼ 1 with probability Vi 3Wj=max½Vi 3Wj � ð13Þ

and

Iij ¼ 0 otherwise: ð14Þ

We studied 200 communities generated with the algorithm
specified above and used the same parameters to analyse the
topology of the networks generated.

Comparisons among models. Models were compared on the basis
of their fit to real-world data. We first fitted separate regression lines
(logarithmic for N, NR, and N*, power fit for C and I) to each data set
generated by the various model (model fits). For each model, we then
calculated the deviation of the real-world data points from the model
fit (i.e., the absolute value of the difference between each real-world
data point and the expected value, calculated using the model fit) and
compared these deviations with the absolute value of the residuals of
the real-world data points to a regression line fitted through these
points (same type of regression as above: logarithmic for N, NR, and
N*, power fit for C and I). Deviations from model fits and residuals
were compared using paired t-tests with sequential Bonferroni
correction. We used paired t-tests because we compared pairs of
distances for each data point: the deviation from the model fit versus
the absolute value of the residual from the empirical fit. We
considered as best models all those that did not differ significantly
from the empirical fit (i.e., those which do not perform significantly
worse than an empirical fit). Whenever all models performed
significantly worse than the empirical fits (i.e., for C and I), we
performed multiple comparisons among all models using paired t-
tests (similar to above but comparing for each real-world data point
the deviation from one model fit versus the deviation from the other
model fit) with sequential Bonferroni correction. We considered as
best models those with the best fit to real-world data (i.e., the lowest
sum of squared deviations) plus all those that did not perform
significantly worse (i.e., those that did not show significantly higher
residuals) than them.
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